
www.postersession.com
www.postersession.com

DNA methylation-demethylation (DNA-M/D) is an
epigenetic mechanism, which is associated with
gene expression. DNA methylation involves the
covalent transfer of methyl groups to cytosine
from cytosine-guanine (CpG) sites, forming 5-
methylcytosine (5-mC); this process is catalyzed
by DNA-methyltransferases (DNMTs)1). Active
DNA demethylation, catalyzed by ten-eleven
translocation enzymes (TETs), consists in the
sequential oxidation of 5-mC to finally be repaired
to cytosine (2) The regulation of this process is not
fully known; however, it has been proposed that
reactive oxygen species (ROS; endogenous or
exogenous) can regulate DNA-M/D (3). The
organophosphate pesticide methyl-parathion (Me-
Pa), despite is highly toxicity, is employed in
developing countries and it produces oxidative
damage in macromolecules of sperm cells (4,5), as
well as DNA alkylation. Recently, we reported that
Me-Pa exposure generates promoter-specific
hypermethylation in antioxidant response and
DNA repair genes in sperm cells (6) , but the mode
of action is unknown.
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Introduction 

Objective 
To evaluate the DNMTs and TETs expression and
methyl-purine DNA glycosylate (MPG; alkylation
repair gene) expression in testicular cells of mice
exposed to Me-Pa (6 mg/kg/day/5 days) and co-
exposed with Me-Pa (same dose)-Vitamin E (50
mg/kg/day/5 days) to evaluate ROS participation.
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Figure 2. mRNA expression levels of A) DNMT1, B) DNMT3A and C)
DNMT3B in testicular cells after Me-Pa exposure and Me-Pa + Vit-E co-
exposition. Bars represent the mean ± SEM. Samples were analyzed by
triplicated. Significant difference (* p < 0.05; *** p < 0.001) between groups
according to the ANOVA test and Tukey pos-hoc test. n=3-5 controls, n= 4-5
Me-Pa exposed and n=5-6 for co-exposed group.
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Me-Pa exposure modulated the alkylated 
bases repair gene expression MPG

Figure 3. mRNA expression levels of A) TET1 and B) TET2 in testicular
cells after Me-Pa exposure and Me-Pa + Vit-E co-exposition. Bars
represent the mean ± SEM. Samples were analyzed by triplicated.
Significant difference (* p < 0.05; *** p < 0.001) between groups according to
the ANOVA test and Tukey pos-hoc test. n=3-5 controls, n= 4-5 Me-Pa
exposed and n=5-6 for co-exposed group.

Figure mRNA expression level MPG in testicular cells after Me-Pa
exposure and Me-Pa + Vit-E co-exposition. Bars represent the mean ±
SEM. Samples were analyzed by triplicated. Significant difference (* p < 0.05;
** p < 0.001) between groups according to the ANOVA test and Tukey pos-hoc
test. n=3-4 controls, n= 5 Me-Pa exposed and n=6 for co-exposed group.

Figure 5. Toxicity nechanism of Me-Pa in testicular cells from mice
exposed to Me-Pa. 1) Repeated exposure (6 mg/kg/day/5 days) to Me-Pa
generates ROS in its metabolism (mediated by CYP450), which regulates a)
De novo (DNMT3A y DNMT3B) and maintenance (DNMT1) DNMTs (DNA
methylation), b) TET1 and TET2 (DNA demethylation). Both alterations
could to explain the hypermethylation phenomenon suggested, in this work,
in MPG promoter (alkylated-bases gene repair) and as we previously
reported in OGG1 (oxidized-bases gene repair) and Nrf2 (antioxidant-
response gene) (6) , which could mean their silencing. 2) Me-Pa exposure
could generates direct DNA alkylations, probably due the “release“ of methyl
groups, possibly for the aging of acethylcholinesterase (AChE)

Figure 1. Schematic ilustration of the procedure for this work.
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